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ABSTRACT

Pure autoregressive (AR) models which are linear in the short term, that is when a
variable can be predicted by linear regression on a limited number of past observations, are
discussed. When evenly-spaced observations are available, a fixed set of AR coefficients
can be calculated independent of the data. For filtering purposes, such a lag structure can
be implemented recursively with an efficient algorithm. The method of computing variance

recursively is also derived. A complete algorithm is presented in the appendix.



INTRODUCTION

Many important problems require the prediction of a variable sequentially based

only on previous observations on that variable. The classic autoregressive (AR) model is

n

Yk = Z oiyk-i + Wk » §))
i=1

wg being a second moment ergodic white noise sequence (see for instance Groupe [1984]

Chapter 8). Several models with a different o; are well known. Irving Fisher (1) studied

a distributed lag structure with lag length n, of the following form:

Yi= r} [nyk-1 + (n-1) yk-2 +..cceet Yk-nl- @
Y i
i=1
This yields lag coefficients oy,
__ntld _ 2(n+1-i)
17 "n  ~ n(n+l) @)
Ti
i=1

which insures that

n
Y oai=t . @
i=1



The average lag (defined as the sum of the weighted time periods) is

n
n Y, (ni+i-i2)

a= Y o=l )
i=1 i
izl
Then
n
2 i2
a=n+1-l=1 =n+1-22}1—=¥. (6)
yi
i=1

Another commonly used expectations model is called naive or static expectations,

Yk = Yk-1» @)
which is the Fisher equation with n=1.
Other forms of expectations operators, which have been investigated principally
with reference to price expectations, include extrapolative, adaptive, and various ad hoc
distributed lags. Some empirical tests have been done: see Turnovsky (3) and Turnovsky

and Wachter (4).



The Least Squares Operator

An alternative method of forming expectations is by defining a linear trend using a

specific number of observations, i.e.:

yy, = a® +be xjc +ex ®)

where a® and b® are estimated from the data.

By choosing the x scale so that xg=0 and the independent variables of the past

observations are xi.; = -i, the model becomes yi =a¢+b¢. 0=ac. We now show how to

obtain the prediction for yx without actually estimating a or b, as follows. The least

squares estimates of a and b are:

and

be o nZxjyi-ZxjXyj 9
nZ‘.x%L-().:xi)2

at= y-bt x. (10)

Letting D = nZx;2 - (Zxj)2 and substituting D into (9) and then into (10) yields

Ty; n(Ex;yi)Ixp (Ex;)2 Iy
—- ) + ) . (11)

at =



Solving for The Lag Coefficient

Next, reorder and expand terms in (11) to obtain:

1
8 = Syl + o Y2 Feei, + = yn
(Zx;)2 (EXi)Z Exp)2
L)) I Y2 e, +—5— ¥n
Zxj Zx{ Zx;
“CD Y12 Y2 - e -(-n) 5 ¥n 12)

Now we wish to obtain a® = oy + 0y +....4+ Onyn°

Summing the coefficients of y; above, we obtain the required AR coefficents which

are, of course, independent of y:

( n 2 g
Z‘, -i) j-._-i
i=1 i=1 . 13)

+
n n n \2
ne Z(-i)2 - (21)2] 2( i)2 - (E 1)
i=1 i=1 i=1

Substituting the equations for sums of numbers and sums of squares into (13)

oo L
(X.J—n+

yields a simplified expression for the AR coefficients:

o =1 [ 3(24—11) S ] Z(in;-.l 31 (18)

The important feature of this model is that it provides an AR lag structure whose
coefficients follow directly from the hypothesis of the limited memory linear least squares

model, and depend only on the order of the model and not on the data. Table 1 provides

the coefficents from (14) for lag lengths up to 8.



TABLE 1. Linear Least Squares Expectations Lag Coefficients
Age of Observation (in Time Periods)

3143 13 -273

411 172 0 -172

5 |8/10 5/10 2/10 -1/10 -4/10

6 |23 115 415 115 -2/15 -1/3

7147 371 21 /1 0 -7 271

8 112 1128 2/71 5128 1/14 -128 -1/71 -1/14




The average lag of the least squares expectations operator is

n n
- X ' 2@n+1-3i)
o= Z‘“I = n(n-1)

i=l =]

n
_2@n+) 2.6 2
~ n(@-1) iéll " n(n-1) igll

- 2(2n+1)* n(+1) 6 * n(n+1)(2n+1)

n(n-1) ¢ 2 “n(@1) o 6

(15)



Predictions for Different Time Period

Coefficients generated by (14) provide least squares expectations for one
observation after the last. Coefficients can also be obtained to predict y further in the
future. Let m be the number of observations missing between the last observation and the

prediction period. If the index of the required expectation is zero, then

(n-m) Zx;j yj - Zxi Zxi

be = 16)
(n-m) Zx; 2. ( Zxi )2 (
where all summations are from m+1 to n.
Then, let
n
n
D =(n-m) Xy - in
i=m+1 i=m+1
n m
2 2 n m
= (n-m) in - xi I- ZXi - in . a7n
i=1 i= i=1 i=1
Substituting for summations using the appropriate equations yields
D = (n-m)2 (n-m-1)(n-m+1)/12. (18)



With some manipulation, the expression for the lag coefficients for expectations m

observations forward is then

__1  {nm+])-mm+D}2 {n(n+1) - m(m+1)} (m+j)
%=tm * 4(n-m)D ) 2D

(19)

For example, if expectations for three periods in the future are needed, and a lag
length of four is chosen, then n=6 and m=2. Using (13) yields

e
Vi = 1.6yk-3 + 0.7yk4 - 0.2y)_5-1.1yk.¢ .

The sum of the lag weights is the same as when m=0,

ni’ 1 1 . {n(n+1) -m(m+1)}2 {n(n+1) - m(m+1)} (m+i)
= e i=£+1 (n'm ¥ 4(n-m)D ) 2D )

_n-m _ (n-m){n(n+1) - m(m+1)}2  {n(n+1) - m(m+1)}2
“am?t 4(n-m)D } 4D

= 1. (20)

The average lag of the future-period least squares expectations operator calculated

as
n-m

Z(mﬂ') Qo

=1
is also zero, but the proof is left to the reader. Table 2 shows coefficients for m=0 to 5§ and

order 2 to 5.



Table 2: Least Squares Expectations Coefficients Where m Periods Are

Skipped Between the Last Observation and the Prediction.

Number of Lag Coefficients (n-m)

PLO—=O =]

AN WN

3 4
43 13 -23 1 S 0 -5
116 13 -7/6 13 6 -1 -8
73 13 53 16 .7 -2 -l1
17/6 13 -13/6 19 8 -3 -14
103 13 -83 22 9 -4 -1.7
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Filterine _Applicati

In this section we show how the lag operator is implemented recursively, for the

case m=0.

First, find two successive estimates yi.1¢ and yﬁ:

n n-1

-
Vie1= & % V14 = O Ykeln+ 2 04 V-1 21)
and

e E nil
Y= i=1°‘1 Yk-i = i=0°‘1+1 Yk-1-i

n-1 .
= 01 ¥k-1+ X Git] V-1 - (22)

The difference between (21) and (22) is

yﬁ - yﬁ_l =0 Yk-1 - On Yk-1-n +r§1 (%41 - % ) Yk-1-i- (23)
But we note that
Qy] - 04 =2 [3(:;;)1; 2 ] = ,,(;fl) . (24)
Substituting (24) into (23) we obtain the recursive expression

e_.e ¢ nl
Yk = Yk-1 + ®1 Yk-1-%n Yk-1-n~ a1y ig.l Yk-1-i - (25)

The recursion is completed by noting that

11



n-1 n-1
2 Yke1-i= L Yk2-i + Yk-2 " Yk-1-n - (26)

The recursive approach requires that the n most recent observations be stored, but at

each iteration only yk.1, Yk-2. and yk.1-n enter the calculations. Except for startup

processing (the first n observations) the amount of processing for such a filter is

independent of the lag period n. An algorithm is provided in the appendix.

Vari f the Predicti

We now derive the variance of the prediction, czyf(. This variance is determined as

follows (from Kmenta, p 228).

cike = E[(yf( -E (yi))z]
=E ([(a® + b®xy) - (a + bxk)]z}

=E{(-92) +E [ (b°- B2 xg ) +2E {(a - a)(b® - b) x)

= Var () + X} Var(®®) + 2xy; Cov (a¢, b) @n
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Now we know from linear regression that, where x'; = x;- X,

2
Var (b8) = o |
inz

= -
Var (a%) =GT;11-+ -}-1— ,

Z)&Z
and
I o2
Cov (a%, b®) = - x|=—r=| ,
Z)gz
where 62 is Var (ek) in (8).

Substituting, we obtain

e 1 x2] 2[e2 o2
o2y, =04 =+ —=|+x} | —|- 2% x| —

-5 x2 oxe X
Xk X

0‘2)’;=0'2 ;ll"" X ™ + kv*‘ kn

inz inz Zxxz

[ 1 (Xk.° x)2
o2y =02 e
in2

(28)

(29)

The expression in (29) gives the variance of the predicted mean value of y for a

given xi. Since the actual observed value of y varies about the true mean value with

variance 62 (independent of the variance of y©), the predicted value of an individual

observation will still be given by y® but will have variance (from Draper and Smith, p.24):

13



(xg - x)2
o2+02y =02| 1 + lﬁ-+ -1(—.-—-)— ) (30)

le2

and since xi =0,

- - 2
(- D2=( 2= 31)

So,

n n (32)

or,

n ' (33)

Whether (32) or (33) is the appropriate equation will depend on the application. If
the filter is predicting the mean value of y (such as the actual position of a target) then (32)
| should be used, because the variance can be made arbitrarily small by increasing the
‘ number of observations. Conversely, if we need to predict the next gbservation such as for
certain search applications, the (33) is used and the minimum variance is 62 no matter how
many observations are used. In the remaining analysis we will use (33), however the

development using (32) is nearly identical.

14



Vari { the Disturl

To estimate 62 we use s2, an unbiased estimator where ¥=Yi- ¥

n
1
s2 =3_7.21(Yi - a® - be x;)2 .
i=

=

i (% b€ - bexi

et o
]
(Y

=]

l '
== ) (y; -b%x)2
i=1

n

n
1 t L ] '
='7n_ (yi)z - 2b2 E Xi yi + (be)2 E xiz
i=1

i=1 =1

=

But we know (see Kmenta, p. 208) that

and
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So we obtain,
n n
1 1 L} 1]
2oyl D v2-ve Y xy (34

1=1

1=

which is a well-known expression for s2. The limited-memory filter is a unique model

where the x; are known, therefore, some simplification is possible. First, express

Ix; ¥i

and subsitute it into (34) to yield,

E Xj Vi
n =

1 : i=

== z y;2 - | (35)
| =T Ex® |
Now, it is easy to show that

n

. 2 —
z Ygi=Z¥ki-P yzk (36)

1=1

which yields
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L

1 2 1 (&2 i=1
L=zl 7| D kif g )
1=1 ‘5
X§
- =1 -
For an efficient recursive calculation of sz, we do not wish to calculate the
summations in (37) each time. Of course, since n is constant and xy_j = -i,
n , )
's _n(n+1)(2n+1) n(n+1)

z xjP==—g— =7 (38)
1=1
Furthermore,

n n
Z Yk-i = z Yk-1-i - Yk-1-n + Yk-1 (39)
1=1 1=1

and
n n
2 2 2 2

z yk—i=zyk-l-i'yk-l-n+yk-l' (40)
i=1 1=1

Now, to compute the final summation term recursively, we write
n n

Z x{ ¥ =Z (—i + n:zl)(Yk-i %))

=1 i=1

17



n
= . n+l . - . n+1
D (e y;(HT)

Vo n n
} : , n+l .
Xy = 21-1 Yk-i + - .El)'k-l . : (41)
1=

i=

Now, we expand the first tem in (41), as follows, for epochs k and k-1:

n
- Y ivki =-Yk-1-2Yk-2" - DYkn
i=1

. .
- Yiyk-14 =-Yk-2- - (DYkn - 0¥k-1-n-

i=1
Then we subtract, yielding
n . n . n .
-y iVki+ Y 1Vk-1-i= - Y Yk-i + DYk-1-n- (42)
i=1 i=1 i=1

Now we write the expression for the cross product term at epoch k and epoch k-1,

using (41)
: n n
v . n+1
E ;i ¥i | =Y ivki+ g YYki-
e K = i=1
and

18



v n. n+l I
X; ¥i == iy¥k-1-i+ 5 ) Yk-1-i -
i=1

i=1 k1 =l

Subtracting the last two equations and substituting (39) and (42), we obtain finally,

v ' ' n
n+l1
E X ;| - E i ¥ i| =-3 Yki+0¥k-1-n+ =3~ (Yk-1 - Yk-1-n)

-1 i=1

(43)
which is the last required difference equation.

The algorithm which implements this recursive model is described in the appendix.

Under what circumstance is such a linear model valid? We can think of many real
world situations where processes are linear (or can be transformed to ones that are) over the
short term but in the long term may be very non-linear. One with which we are familiar is a

linear process whose slope is subject to randomly occurring jumps. Under this

assumption, we have the frue model,

yi=a+bxj+¢g,i2kn 44)

where k-n is the epoch of the most recent jump. Of course, n is the unknown but we can
estimate its value. This estimate may give us two kinds of problems in the estimation of a
and b. First, if we choose n too large, and we include data points which are not part of the

true model, our regression is biased. However, until the next jump occurs, we are at least

19



consistent. On the other hand, if we choose n too small, then we are omitting usable data

from the regression, which is inefficient.

We suggest that it might be possible, given a particular application, to choose n so

as to minimize the expected total (bias and inefficiency) error.
Computational Results

Table 3 shows a simulated data set and the results of using the model with order

n=8. The true model is y; = 18+2;, i=1,...,18 and y; = 54-i, i=19,...,50. The observation

error introduced in the simulation is normal with 6=3.

Figure 1 shows the behavior of the model for n=6, 8, 10, and 15, respectively.
Note that the calculated variance (using equation (32)) increases for a time (about n

observations) after the jump at observation 18, an indication that the filter in some sense

"detects" the jump.

We should note that much more powerful filters are available to deal with the type
of data discussed herein, such as Kalman Filters with short- and long-term processes, but
all such models require considerably more processing and are much more general. The

filter presented here is narrowly-defined but extremely easy to compute.

20



Table]

Simulation Results
Number Observ  Predict Error Variance Sigma

1 22.3367

2 24.0347

3 29.6256

4 28.5831

5 27.4105

6 34.6796

7 35.4258

8 36.9346

9 33.2763 39.1537 5.8773 4.009 2.434
10 36.8247 38.1588 1.3341 4,358 2.088
11 42,0522 38.3724 -3.6797 3.792 1.947
12 40.1222 41.8262 1.7040 4.200 2.049
13 44.3455 42,6113 -1.7343 4,368 2.090
14 47.5987 43.8529 -3.7458 3.195 1.787
15 41.1860 47.5027 6.3166 3.498 1.870
16 55.5352 46.8285 -8.7067 5.834 2415
17 51.9135 53.2506 13371 9.065 3.011
18 50.4021 54,5623 4.1602 8.911 2.985
19 52.7145 54.3888 1.6743 9.730 3.119
20 52.8151 55.7838 29687 9.683 3.112
21 51.2435 55.3974 4.1539 9.419 3.069
22 459523 54.3735 8.4212 10.218 3.197
23 47.6973 51.1269 3.4296 14.498 3.808
24 49.4900 46.6388 -2.8512 2.465 1.570
25 46.8479 47.4743 6264 2.598 1.612
26 45.5741 46.3428 .7688 2.556 1.599
27 429773 44,5775 1.6002 1.986 1.409
28 40.2959 42.8569 2.5610 2.147 1.465
29 44 4757 40.8748 -3.6009 2474 1.573
30 39.7585 41.7626 2.0041 2991 1.730
31 38.6393 39.1273 4880 2.134 1.461
32 39.6311 37.2192 -2.4119 1.872 1.368
33 41.7540 374178 -4.3363 1.888 1.374
K] 37.8070 38.7905 9835 2.721 1.649
35 37.6862 38.2805 5944 2.382 1.543
36 41.9468 38.6149 43318 2.383 1.544
37 37.6959 38.6889 9929 3434 1.853
38 30.6637 38.9533 8.2896 2.105 1.451
39 34.6891 34.7433 0542 6.192 2.488
40 34.5748 33.1207 -1.4540 5.326 2.308
41 30.1492 32.2185 2.0692 5.110 2.260
42 31.6565 30.4034 -1.2531 5.333 2.309
43 303123 29.1756 -1.1367 4,945 2.224
4 25.7946 27.8916 2.0970 4,680 2.163
45 25.7283 26.6604 9321 3.552 1.885
46 23.4342 25.6085 2.1743 3.241 1.800
47 18.8451 22.1803 3.3352 1.086 1.042
48 27.1559 18.6698 -8.4860 1.590 1.261
49 22.6779 209714 -1.7065 5.798 2.408
50 25.5353 20.2484 -5.2869 5.918 2.433

21



FIGURE 1

Results of Simulated Data Using Limited-Memory Filter
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APPENDIX
SEQUENTIAL ALGORITHM FOR Y®

BEGIN
Select n; then, C g = ﬁ

and
2(n+1-3i) .
Qo = —n(_n-_l)_)- , 1=1,...,n .
Get n observations.
e n
Compute Y+l = i§1 O Yn+1-i
and
n-1
2 Yndi -
=1 ™
Set k=n+1 .
REPEAT
Observe y k.
INC (k,1)
n:1 n-1
Compute igl Yk-1-i = (El y k-2-i) +Yk-2 - Yk-1-n -
e e n-1
Compute Yk =Yk-1 Y21Yk-1 -~ an¥k-1-n - Co (igl Yk-1- ) .
END

24



RECURSIVE ALGORITHM FOR VAR (Y¢)

BEGIN
' n(n+1) (2n+1 n(n+1) 2
Compute C;=3x'2= ( )é L (4)
.l @2 1 D2
and C2-1+n+T~T,T°r n+-q-cl—-.

Get n observations.

n
Compute igl Yn+1-i »

and

Setk =n+l.

25




REPEAT

Observe y k .

INC (k,1) .

Compute

and

n n
Y Yki= X Yk-14i +Yk-1-Yk-1-n »
i=1 i=1
ot toot n n+1
ZXY k= IXY' k1 - T Vkd *Wkln + 3 (Yk-1 - Yk-1-n) »

n 2 n 2 5 )
Z Yk = Z Vel YV kD) - Oke1n)”

te,! 2
’ 1 /2 2 1yt ) (2xy'x)
o?=C2*l57 V.5 Yki~ a| g YK - T

END
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